In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent.

نویسندگان

  • A F Black
  • F Berthod
  • N L'heureux
  • L Germain
  • F A Auger
چکیده

For patients with extensive burns, wound coverage with an autologous in vitro reconstructed skin made of both dermis and epidermis should be the best alternative to split-thickness graft. Unfortunately, various obstacles have delayed the widespread use of composite skin substitutes. Insufficient vascularization has been proposed as the most likely reason for their unreliable survival. Our purpose was to develop a vascular-like network inside tissue-engineered skin in order to improve graft vascularization. To reach this aim, we fabricated a collagen biopolymer in which three human cell types keratinocytes, dermal fibroblasts, and umbilical vein endothelial cells were cocultured. We demonstrated that the endothelialized skin equivalent (ESE) promoted spontaneous formation of capillary-like structures in a highly differentiated extracellular matrix. Immunohistochemical analysis and transmission electron microscopy of the ESE showed characteristics associated with the microvasculature in vivo (von Willebrand factor, Weibel-Palade bodies, basement membrane material, and intercellular junctions). We have developed the first endothelialized human tissue-engineered skin in which a network of capillary-like tubes is formed. The transplantation of this ESE on human should accelerate graft revascularization by inosculation of its preexisting capillary-like network with the patient's own blood vessels, as it is observed with autografts. In addition, the ESE turns out to be a promising in vitro angiogenesis model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

Capillary Network Formation by Endothelial Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells

Human bone marrow derived mesenchymal stem cells (HBMSCs) have the potential to differentiate into cells such as adipocyte, osteocyte, hepatocyte and endothelial cells. In this study, the differentiation of hBMSCs into endothelial like-cells was induced in presence of vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). The differentiated endothelial cells were exam...

متن کامل

In Vitro Construction of Scaffold-Free Bilayered Tissue-Engineered Skin Containing Capillary Networks

Many types of skin substitutes have been constructed using exogenous materials. Angiogenesis is an important factor for tissue-engineered skin constructs. In this study, we constructed a scaffold-free bilayered tissue-engineered skin containing a capillary network. First, we cocultured dermal fibroblasts with dermal microvascular endothelial cells at a ratio of 2 : 1. A fibrous sheet was formed...

متن کامل

In vitro Assay of Human Gingival Scaffold in Differentiation of Rat’s Bone Marrow Mesenchymal Stem Cells to Keratinocystes

Objective(s)Tissue engineering is an attractive science because it promises new therapeutic strategies for repairing organs that have lost functions due to damage. The purpose of this study was to evaluate induction effect of human gingival scaffold in tissue engineering for skin regeneration.Materials and MethodsTissue samples were obtained from crown-lengthening procedures and wisdom teeth re...

متن کامل

Tissue engineering of lips and muco-cutaneous junctions: in vitro development of tissue engineered constructs of oral mucosa and skin for lip reconstruction.

We report for the first time the fabrication of a three-dimensional tissue structure containing, in a continuous layer, the morphological features of a lip: epidermal skin, vermillion, and oral mucosa. This tissue engineered muco-cutaneous (M/C) equivalent was manufactured using human oral and skin keratinocytes grown on an acellular, nonimmunogenic dermal equivalent (AlloDerm(®)) to produce a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 12 13  شماره 

صفحات  -

تاریخ انتشار 1998